We study the complexity classes 𝖯 and 𝖭𝖯 through a semigroup 𝖿𝖯 ("polynomial-time functions"), consisting of all polynomially balanced polynomial-time computable partial functions. The semigroup 𝖿𝖯 is non-regular if and only if 𝖯 ≠ 𝖭𝖯. The one-way functions considered here are based on worst-case complexity (they are not cryptographic); they are exactly the non-regular elements of 𝖿𝖯. We prove various properties of 𝖿𝖯, e.g. that it is finitely generated. We define reductions with respect to which certain universal one-way functions are 𝖿𝖯-complete.
Read full abstract