Recently, different metaheuristic techniques, their variants, and hybrid forms have been extensively used to solve economic load dispatch (ELD) problems with and without valve point loading (VPL) effects. Due to the randomization involved in these metaheuristic techniques, one has to perform extensive runs for each experiment to get an optimal solution. The process may sometimes become laborious and time-consuming to converge to an optimal solution. On the other hand, advanced calculus-based techniques, being deterministic, perform iteration systematically and come up with the same solution on each run of the experiment. Since ELD problems are constrained optimization problems, we are proposing the constrained (deterministic) optimization algorithm for their solutions. Various 13-unit, 38-unit, and 40-unit thermal test systems are considered. Valve point loading (VPL) effects are also considered in some cases. Computer-based numerical results depict that the constrained optimization algorithm shows evidence of being almost as competitive in a total fuel cost as the metaheuristic optimization techniques, especially for the less-constrained ELD problems but with far reduced computation time. This finding validates the application of the constrained optimization technique to solve the economic dispatch problem.