It is often claimed that coal-fired units are highly inflexible to accommodate variable renewable energy. However, a recently published report illustrates that making existing coal-fired units more flexible is both technically and economically feasible. Auxiliary firing is an effective and promising measure for coal-fired units to reduce their minimum loads and thus augment their flexibility. To implement the economic valuation of low-load operation with auxiliary firing (LLOAF) of coal-fired units, we improve the traditional fuel cost model to express the operating costs of LLOAF and present the economic criterion and economic index to assess the economics of LLOAF for a single coal-fired unit. Moreover, we investigate the economic value of LLOAF in the power system operation via day-ahead unit commitment problem and analyze the impacts on the scheduling results from unit commitment policies and from extra auxiliary fuel costs. Numerical simulations show that with the reduction of the extra auxiliary fuel costs LLOAF of coal-fired units can remarkably decrease the total operating costs of the power system. Some further conclusions are finally drawn.
Read full abstract