During language comprehension, the larger neural response to unexpected versus expected inputs is often taken as evidence for predictive coding-a specific computational architecture and optimization algorithm proposed to approximate probabilistic inference in the brain. However, other predictive processing frameworks can also account for this effect, leaving the unique claims of predictive coding untested. In this study, we used MEG to examine both univariate and multivariate neural activity in response to expected and unexpected inputs during word-by-word reading comprehension. We further simulated this activity using an implemented predictive coding model that infers the meaning of words from their orthographic form. Consistent with previous findings, the univariate analysis showed that, between 300-500ms, unexpected words produced a larger evoked response than expected words within a left ventromedial temporal region that supports the mapping of orthographic word-forms onto lexical and conceptual representations. Our model explained this larger evoked response as the enhanced lexico-semantic prediction error produced when prior top-down predictions failed to suppress activity within lexical and semantic "error units". Critically, our simulations showed that, despite producing minimal prediction error, expected inputs nonetheless reinstated top-down predictions within the model's lexical and semantic "state" units. Two types of multivariate analyses provided evidence for this functional distinction between state and error units within the ventromedial temporal region. First, within each trial, individual voxels within this region produced unique temporal patterns between 300-500ms that that resembled the temporal patterns produced within a pre-activation time-window before the expected input became available. First, within each trial, the same left ventromedial voxels that produced a larger response between 300-500ms to unexpected inputs, reinstated unique pre-activated item-specific temporal patterns in response to expected inputs within this same time window. Second, across trials, and again within the same 300-500ms time window and left ventromedial temporal region, pairs of expected words produced spatial patterns that were more similar to one another than the spatial patterns produced by pairs of expected and unexpected words, regardless of specific item. Together, these findings provide compelling evidence that the left ventromedial temporal lobe employs predictive coding to infer the meaning of incoming words from their orthographic form during reading comprehension.
Read full abstract