BackgroundCarbon quantum dots (CQDs) have gained much interest recently for being efficient probes. Their cost-effectiveness, eco-friendliness, and unique photocatalytic activities made them distinctive alternatives to other luminescent approaches like fluorescent dyes and luminous derivatization. Meanwhile, delafloxacin (DLF) is a recently approved antibacterial medicine. DLF has been authorized for the treatment of soft-tissue and skin infections as well as pneumonia. Therefore, new eco-friendly, cost-effective, and sensitive tools are needed its estimation in different matrices. ResultsIn the proposed study, green copper and nitrogen carbon dots (Cu-N@CDs) were synthesized from a green source (plum juice with copper sulphate). Cu-N@CQDs were then characterized using multiple tools including X-ray photon spectroscopy (XPS), FTIR and UV-VIS spectroscopy, Zeta potential measurements, High-resolution transmission electron microscopy (HRTEM), and fluorescence spectroscopy. After gradually adding DLF, the developed quantum dots’ fluorescence was significantly enhanced within the working range of 0.5–100.0 ng mL−1. The limits of detection and quantification were 0.08 and 0.27 ng mL−1, respectively. The accuracy of the proposed method ranged from 96.00 to 99.12 % in recovery%, when recovered from milk and plasma samples. SignificanceCu-N@CDs were utilized and validated for selectively determining DLF in several matrices including pharmaceutical forms, human plasma and in milk samples using spectrofluorimetric technique. The bio-analytical method is simple and could be used in content uniformity testing as well as in therapeutic drug monitoring in human plasma.
Read full abstract