While transparent exopolymer particles (TEP) has high fouling potential, its underlying fouling mechanisms have not yet been well revealed. In current work, fouling characteristics of TEP under different Ca2+ concentrations (0 to 1.5 mM) were investigated. TEP quantification and filtration tests showed that TEP contents increased with Ca2+ concentration, while TEP's specific filtration resistance (SFR) under the influence of Ca2+ concentration presented a unimodal pattern. The peak of TEP's SFR reached at Ca2+ concentration of 1 mM when SA concentration was 0.3 g·L−1. A series of characterizations suggested that microstructure transformation of TEP particles was the main contributor to the resistance variations of TEP solution. The optical microscope observation showed that above and below the critical Ca2+ concentration (1 mM when SA concentration is 0.3 g·L−1 in this study), the formed TEP existed in the form of c-TEP (average particle size is 0.24 μm) and p-TEP (average particle size is 1.05 μm), respectively. Thermodynamic analysis showed that the adhesion ability of c-TEP (−249,989 and − 303,692 kT) was more than 19 times than that of p-TEP (−12,905 kT), which would accelerate foulant layer formation. In addition, below the critical value, the increased SFR with Ca2+ concentration could be explained by integrating Flory-Huggins lattice theory with the preferential intermolecular coordination. Above the critical value, the decreased SFR can be attributed to the formation of a “large-size crack structure” cake layer from the p-TEP. This study revealed fundamental mechanisms of membrane fouling caused by TEP, greatly deepening understanding of TEP fouling, and facilitating to development of effective fouling control strategies.
Read full abstract