This study proposes a new sensor cluster configuration for localizing an acoustic source in a plate using uniform linear array beamforming and T-shaped sensor clusters. This technique requires neither the properties of the plate material nor a dense array of sensors to find the direction of arrival of the acoustic source. It functions by placing four sensors in a cluster in the shape of the letter “‘T” over a small region of the plate. Uniform linear array beamforming-based source localization is carried out by the constructive interference of different sensor signals. However, this approach has the disadvantage of a very low resolution when the direction of arrival approaches certain values. The L-shaped sensor clusters use the information from the time difference of arrival between the sensors to estimate the direction of arrival, which has a high resolution in all directions except for the direction that is very close to vertical to the cluster. In this study, we numerically and experimentally demonstrate that the proposed T-shaped sensor cluster can accurately localize the acoustic source with no blind area. We also detail its superior performance compared to both uniform linear array beamforming and L-shaped clusters. In the experimental investigation, the maximum deviation of impact source localization was reduced significantly, from 54° to 4° for an aluminum plate, and from 42° to 3° for a composite plate. Furthermore, this novel combined sensor array layout requires only a few sensors, which can significantly reduce the cost of structural health monitoring practice.