A new infinitesimal sufficient condition is given for uniform global asymptotic stability (UGAS) for time-varying nonlinear systems. It is used to show that a certain relaxed persistency of excitation condition, called uniform /spl delta/-persistency of excitation (U/spl delta/-PE), is sufficient for uniform global asymptotic stability in certain situations. U/spl delta/-PE of the right-hand side of a time-varying differential equation is also shown to be necessary under a uniform Lipschitz condition. The infinitesimal sufficient condition for UGAS involves the inner products of the flow field with the gradients of a finite number of possibly sign-indefinite, locally Lipschitz Lyapunov-like functions. These inner products are supposed to be bounded by functions that have a certain nested, or triangular, negative semidefinite structure. This idea is reminiscent of a previous idea of Matrosov who supplemented a Lyapunov function having a negative semidefinite derivative with an additional function having a derivative that is definitely nonzero where the derivative of the Lyapunov function is zero. For this reason, we call the main result a nested Matrosov theorem. The utility of our results on stability analysis is illustrated through the well-known case-study of the nonholonomic integrator.
Read full abstract