We report on a surface-enhanced Raman scattering (SERS) platform for the detection of five beta-blockers (ÎČ-blockers): atenolol, esmolol, labetalol, sotalol, and propranolol. Key to this platform was a two-dimensional substrate formed by self-assembling large Ag@SiO2 nanoparticles (Ag@SiO2 NPs) on a silicon wafer. The close arrangement of these large nanoparticles on the surface generated a strong and uniform electromagnetic field, which enhanced SERS signal intensity for the detection of small amounts of the target molecules. The intensities of characteristic peaks of the five ÎČ-blocker drugs increased linearly with the increase of their concentrations in the range of 10-5 to 10-8 mol/L. The detection limits were 10-10 mol/L for propranolol, 10-9 mol/L for atenolol, labetalol, and sotalol, and 10-8 mol/L for esmolol. Determination of these five ÎČ-blocker drugs added to human urine samples, using a portable Raman spectroscopy instrument, showed quantitative recovery (93-101%). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) of SERS spectral data improved the differentiation among these five ÎČ-blockers. This study highlights the potential of the developed SERS platform for rapid, on-site detection of illicit drugs and for antidoping screening.
Read full abstract