ObjectivesThe permeability of triamcinolone acetonide (TA), from bilayer mucoadhesive buccal films, through a biomimetic membrane, Permeapad™, was investigated employing Franz diffusion cell. The delivery systems composition and ethyl cellulose (EC) backing layer, on drug permeability, were assessed. MethodsThree TA-loaded films were tested; hydroxypropyl methylcellulose (HPMC K4M; bilayer [F1] and monolayer), HPMC K4M/Polyvinylpyrrolidone (PVP): 90/10 [F2], and HPMC K15M film [F3]. All films contained propylene glycol (PG-plasticiser). TA solution alone was used as a control. TA permeability via a Permeapad™ barrier, simulating buccal mucosa, was assessed over 8 h using a Franz diffusion cell. TA permeated into the receptor compartment, released in the donor compartment, and located on/within the Permeapad™ barrier were analysed using UV-spectrophotometer. Results45.7 % drug retention within the Permeapad™ barrier was delivered from F1 (highest). F1, F2, and F3 significantly improved the TA’s permeability through Permeapad™, compared to TA solution alone (e.g., 8.5 % TA-solution, 21.5 %-F1), attributed to the synergy effect of HPMC and propylene glycol acting as penetration enhancers. F1 displayed a significant increase in drug permeability (receptor compartment; 21.5 %) compared to F3 (17.0 %). PVP significantly enhanced drug permeability (27.5 %). Impermeable EC backing layer controlled unidirectional drug release and reduced drug loss into the donor compartment (e.g., ∼28 % for monolayer film to ∼10 % for bilayer film, F1). SignificanceThe mucoadhesive films demonstrated improved TA permeability via Permeapad™. The findings suggest that these bilayer mucoadhesive films, particularly F1, hold promise for the effective topical treatment of oral mucosa disorders, such as recurrent aphthous stomatitis and oral lichen planus.
Read full abstract