Although natural sunlight is one of the most abundant and sustainable energy resources, only a fraction of its energy is currently harnessed and utilized in photoactive systems. The development of molecular photoswitches that can be directly activated by sunlight is imperative for unlocking the full potential of solar energy and addressing the growing energy demands. Herein, we designed a series of 2-amino-1,3-bis-azopyrazoles featuring a coupled πn system, resulting in a pronounced redshift in their spectral absorption, reaching up to 661 nm in the red region. By varying the amino substituents of these molecules, highly efficient E→Z photoisomerization under unfiltered sunlight can be achieved, with yields of up to 88.4 %. Moreover, the Z,Z-isomers have high thermal stability with half-lives from days to years at room temperature. The introduction of ortho-amino substitutions and meta-bisazo units leads to a reversal of the n-π* and πn-π* transitions on the energy scale. This change provides a new perspective for further tuning the visible absorption of azo-switches by utilizing the πn-π* band instead of the conventional n-π* band. These results suggest that photoresponsive systems can be powered by sunlight instead of traditional artificial lights, thereby paving the way for sustainable smart materials and devices.
Read full abstract