BackgroundEave spaces are major entry points through which malaria vectors enter houses. Interventions that target mosquitoes at the eaves have recently been developed. However, most of these interventions are based on insecticides for which resistance has been reported. Here we evaluated the efficacy of mosquito electrocuting eave tubes (MEETs) against Anopheles gambiae sensu stricto (An. gambiae s.s.) and Anopheles funestus s.s. under semi-field conditions.MethodsExperiments were conducted in two semi-field chambers, each containing one experimental hut. Six electrocuting eave tubes were installed in each hut to assess their impact on laboratory-reared An. gambiae s.s. and An. funestus s.s.. Each species was assessed separately over 10 nights by releasing 200 unfed females per night into each chamber. One volunteer slept in each hut from 7 p.m. to 5 a.m. Mosquitoes were collected indoors and outdoors using mouth and Prokopack aspirators.ResultsThe placement of MEETs significantly reduced the nightly An. gambiae s.s. indoor and outdoor biting, by 21.1% and 37.4%, respectively. Indoor-biting An. funestus s.s. were reduced by 87.5% while outdoor-biting numbers of An. funestus s.s. declined by 10.4%.ConclusionsMEETs represent a promising tool for controlling mosquitoes at the point of house entry. Further validation of their potential under natural field conditions is necessary. Several advantages over insecticide-based eave tubes are indicated and discussed in this article.Graphical