In this paper we consider the motion of relativistic electrons in an ideal three-dimensional magnetic field of an undulator. The ideality of the magnetic field means that, on the undulator axis, the field is directed strictly vertically upward and has a strictly sinusoidal shape. In the overwhelming majority of cases, only this leading component of the field is taken into account in calculating the electron trajectory. In this paper, in the equations of motion of an electron in the magnetic field of an undulator, all three components of the field are taken into account, so that the undulator field under consideration satisfies the stationary Maxwell equations. In this case, the differential equations of motion of the electron are solved analytically with the help of perturbation theory, and not by the method of averaging over fast oscillations of the electron, as was done in a number of previous papers. These analytic expressions for trajectories describe the behavior of particles in the focusing magnetic field of an undulator much more completely. An analysis of these expressions shows that the behavior of electrons in such a three-dimensional field of the undulator is much more complicated than what follows from the equations obtained by the averaging method. In particular, there is a cross effect when changes in the initial vertical parameters of the electron trajectory cause changes in the horizontal component of its trajectory and vice versa. A comparison of the solutions obtained analytically with the results of numerical calculations of electron trajectories using the Runge–Kutta method demonstrates their high accuracy.
Read full abstract