Underwater image restoration is a crucial task in various computer vision applications, including underwater target detection and recognition, autonomous underwater vehicles, underwater rescue, marine organism monitoring, and marine geological survey. Among other categories, the physics-based methods restore underwater images by improving the transmission map through optimization or regularization techniques. Conventional optimization-based methods often do not consider the effect of structural differences between guidance and transmission maps. To address this issue, in this paper, we present a regularization-based method for restoring underwater images that uses coherent structures between the guidance map and the transmission map. The proposed approach models the optimization of transmission maps through a nonconvex energy function comprising data and smoothness terms. The smoothness term includes static and dynamic structural priors, and the optimization problem is solved using a majorize-minimize algorithm. We evaluate the proposed method on benchmark datasets, and the results demonstrate the superiority of the proposed method over state-of-the-art techniques in terms of improving transmission maps and producing high-quality restored images.
Read full abstract