Due to the absorption and scattering effect on light when traveling in water, underwater images exhibit serious weakening such as color deviation, low contrast, and blurry details. Traditional algorithms have certain limitations in the case of these images with varying degrees of fuzziness and color deviation. To address these problems, a new approach for single underwater image enhancement based on fusion technology was proposed in this article. First, the original image is preprocessed by the white balance algorithm and dark channel prior dehazing technologies, respectively; then two input images were obtained by color correction and contrast enhancement; and finally, the enhanced image was obtained by utilizing the multiscale fusion strategy which is based on the weighted maps constructed by combining the features of global contrast, local contrast, saliency, and exposedness. Qualitative results revealed that the proposed approach significantly removed haze, corrected color deviation, and preserved image naturalness. For quantitative results, the test with 400 underwater images showed that the proposed approach produced a lower average value of mean square error and a higher average value of peak signal-to-noise ratio than the compared method. Moreover, the enhanced results obtain the highest average value in terms of underwater image quality measures among the comparable methods, illustrating that our approach achieves superior performance on different levels of distorted and hazy images.