The replacement of feldspars is commonly characterized by pseudomorphism and reaction-induced pore generation. However, the effects of compositions of feldspars and fluids on porosity generation during alteration are still poorly understood. In this study, we conducted a series of hydrothermal experiments on plagioclase replacement by 2 M KCl or NaCl aqueous solutions at 600 °C and 150 MPa for 1–8 days, using plagioclase with different compositions (anorthite, An96Ab4; labradorite, An66Ab33Or1; albite, An1Ab99) with or without quartz. Albite replacement by K-feldspar was not affected by the presence of quartz, whereas anorthite was unaltered in the quartz-absent fluid. The replacement of labradorite by KCl(aq) showed different results: in the presence of quartz, labradorite was altered by K-feldspar, whereas in the absence of quartz, alteration proceeded significantly with the generation of large pores hosted by secondary anorthite coupled with euhedral K-feldspar overgrowth. Such textural relationship and oxygen isotope-labeled experiments reveal that silica-deficient fluid enhances the uncoupled dissolution reprecipitation process. The Si and Al ions in the reacted aqueous solution diffused outside the labradorite grains and encountered K+-rich solutions to grow K-feldspar. The experiments with polycrystalline rocks composed of amphibole + labradorite using 2 M KCl aqueous solution indicated the replacement of labradorite grains by anorthite and K-feldspar overgrowth, as found in single-crystal experiments. Our results indicate that the silica concentration in the fluids has different influences on the saturation indices of albite, anorthite, and K-feldspars in saline fluids, which significantly affect the replacement textures and porosity generation in crustal rocks.