The voltage in distribution systems is controlled by the under-load tap changer of the substation and the pole transformer of the primary feeders. Recently, as one of the main countermeasures, a step voltage regulator is being introduced to solve voltage problems such as overvoltage phenomena in a distribution feeder interconnected with a renewable energy source and under voltage in a long-distance feeder. However, the tap of the step voltage regulator may be frequently operated due to its interdependent relationship with the under-load tap changer in the distribution system. Furthermore, given the existing operating characteristics of the step voltage regulator, it is difficult to perfectly maintain the customer voltage within an allowable limit using existing methods such as the line drop compensation method for a step voltage regulator. In addition, the existing line drop compensation method, considering the distributed generators, may be not able to control the proper voltage within an allowable limit. Therefore, in order to solve such voltage problems, this paper proposes a voltage control method for a step voltage regulator by considering the output voltage of an under-load tap changer that is operated via the line drop compensation method. In other words, to overcome the limitations of existing voltage control methods for step voltage regulators, this paper proposes an optimal control method to determine the optimal compensation rate for a step voltage regulator by considering the reverse power flow from a renewable energy source and the output voltage of the under-load tap changer of the main transformer.
Read full abstract