Uterine inflammation affects 8% of women in the United States and 32% in developing nations, often caused by uncontrolled inflammation and oxidative stress. This condition significantly impacts women’s health, productivity, and quality of life, and increases the risk of related morbidities leading to higher healthcare costs. Research now focuses on natural antioxidants and anti-inflammatory, particularly berberine (BBR), an isoquinoline alkaloid known for its antioxidant, anti-inflammatory, and antiapoptotic activities. The present study sought to examine the potential therapeutic efficacy of BBR against uterine inflammation induced by the intrauterine infusion of an iodine (I2) mixture in an experimental setting. Female Sprague Dawley rats (n = 6) were divided into five groups, control, sham, I2, I2 and BBR 10 mg/kg, and I2 and BBR 25 mg/kg-treated groups. Compared to I2 infusion, BBR treatment effectively restored normal uterine histopathology and reduced inflammatory markers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor- kappa B (NF-κB), monocyte chemoattractant protein 1 (MCP1), and myeloperoxidase (MPO). It lowered oxidative markers like malondialdehyde (MDA), and increased antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). It balanced apoptotic genes by upregulating B-cell lymphoma 2 (Bcl-2) and downregulating Bcl-2-associated X protein (Bax). Furthermore, BBR reduced the expression of Toll-like receptor 2 (TLR-2), phosphorylated phosphatidylinositol 3‑kinase (p-PI3K), and phosphorylated protein kinase B (p-AKT) in the rats treated with intrauterine I2. Ultimately, the therapeutic benefits of BBR can be attributed, to some extent, to its antioxidant, anti-inflammatory, and antiapoptotic properties, in addition to its ability to modulate the TLR-2/p-PI3K/p-AKT axis.
Read full abstract