The demand for low-carbon transformations and the uncertainty of renewable energy sources and loads present significant challenges for the optimal dispatch of microgrid. This study proposed a multi-objective robust dispatch strategy to reduce the risks associated with the uncertainty of renewable energy source output and loads while promoting low-carbon and economical microgrid operation. The economic emission dispatch problem for a microgrid was formulated as a multi-objective robust dual-layer optimization model. Consequently, a high-dimensional adjustable linear polyhedral uncertainty set was proposed to describe the uncertainty of renewable energy sources and loads. This study transformed the original model into an easy-to-solve single-layer second-order cone programming optimal power flow optimization model by employing second-order cone relaxation and duality transformation. Thereafter, a synthetic membership function was proposed to determine the optimal compromise solution. To determine the charging and discharging statuses of the battery storage system and the electricity traded between the microgrid and the external power grid, a battery storage system control strategy based on time-of-use electricity prices and real-time power flow calculations was proposed. Simulations conducted on a modified IEEE-30 bus system demonstrated that the proposed strategy effectively reduced the economic costs and carbon emissions of the microgrid by 8.23 % and 2.43 %, respectively.
Read full abstract