Clinical laboratories face limitations in implementing advanced quality control (QC) methods with existing systems. This study aimed to develop a web-based application to addresses this gap, and improve QC practices. QC Constellation, a web application built using Python 3.11, integrates various statistical QC modules. These include Levey-Jennings charts with Westgard rules, sigma-metric calculations, exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts, and method decision charts. Additionally, it offers a risk-based QC section and a patient-based QC module aligning with modern QC practices. The codes and the web application links for QC Constellation were shared at https://github.com/hikmetc/QC_Constellation, and http://qcconstellation.com, respectively. Using synthetic data, QC Constellation demonstrated effective implementation of Levey-Jennings charts with user-friendly features like checkboxes for Westgard rules and customizable moving averages graphs. Sigma-metric calculations for hypothetical performance values of serum total cholesterol were successfully performed using allowable total error and maximum allowable measurement uncertainty goals, and displayed on method decision charts. The utility of the risk-based QC module was exemplified by assessing QC plans for serum total cholesterol, showcasing the application's capability in calculating risk-based QC parameters including maximum unreliable final patient results, risk management index, and maximum run size andoffering risk-based QC recommendations. Similarly, the patient-based QC and optimization modules were demonstrated using simulated sodium results. In conclusion, QC Constellation emerges as a pivotal tool for laboratory professionals, streamlining the management of quality control and analytical performance monitoring, while enhancing patient safety through optimized QC processes.