The rapid evolution of large language models, in particular OpenAI’s GPT-3.5-turbo and GPT-4, indicates a growing interest in advanced computational methodologies. This paper proposes a novel approach to synthetic data generation and knowledge distillation through prompt engineering. The potential of large language models (LLMs) is used to address the problem of unbalanced training datasets for other machine learning models. This is not only a common issue but also a crucial determinant of the final model quality and performance. Three prompting strategies have been considered: basic, composite, and similarity prompts. Although the initial results do not match the performance of comprehensive datasets, the similarity prompts method exhibits considerable promise, thus outperforming other methods. The investigation of our rebalancing methods opens pathways for future research on leveraging continuously developed LLMs for the enhanced generation of high-quality synthetic data. This could have an impact on many large-scale engineering applications.