The large dimensions of the 1000 MW hydroelectric generator sets require high mounting accuracy. Small deviations can lead to asymmetry, which in turn triggers unbalanced magnetic pulls and moments. Therefore, symmetry is a central challenge in the installation and operation of giant hydroelectric generators. In this paper, the effects of radial eccentricity, axial offset, and rotor shaft deflection on the unbalanced magnetic pull and moment are investigated by transient finite element analysis of the asymmetric magnetic field. The results of the time-domain and frequency-domain analyses show that asymmetric operation generates unbalanced magnetic forces and moments. These forces and moments increase linearly with increasing offset or deflection rate. When the eccentricity meets the installation criteria, the unbalanced magnetic pull forces are small and within acceptable limits. This study helps to understand the relationship between asymmetry and unbalanced magnetic pulling forces in large hydroelectric generators, and provides a theoretical basis for standardizing installation deviation control.
Read full abstract