Ultraviolet radiation activates the expression of a wide variety of genes, by pathways which differ between the short non-solar ultraviolet C (UVC) wavelengths, which are strongly absorbed by nucleic acids, and the long solar ultraviolet A (UVA, 320-380 nm) wavelengths, which generate active oxygen intermediates. Intermediate solar ultraviolet (UV) wavelengths in the UVB (290-320 nm) range also contain an oxidative component, but more closely resemble UVC in their gene activating properties. Short wavelength UV, in common with other extracellular stimuli including growth factors, activates signal transduction events that involve both stress- and mitogen-activated protein kinase cascades. The extrapolation of the complex modulation of gene expression that ensues to the consequences of natural UV exposure requires careful attention to the details of doses and wavelength employed in the model experiments. Nevertheless, there is evidence that UVB irradiation of skin can activate the expression of proteins including immunomodulating cytokines, ornithine decarboxylase and, to a limited extent, nuclear oncogene products, as well as lead to stabilisation of p53. Non-cytotoxic doses of UVA radiation also lead to the strong activation of several genes which would be expected to have functional relevance in vivo.