IntroductionOur previous preclinical experiments show that under specific and monitored conditions, ultraviolet A (UVA) exposure reduces certain bacteria, fungi, and viruses including coronavirus-229E without harming mammalian columnar epithelial cells. The goal of this study was to evaluate the safety and effects of narrow-band UVA therapy administered by a novel device via endotracheal tube in critically ill subjects with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.MethodsNewly intubated, mechanically ventilated adults with SARS-CoV-2 infection and an endotracheal tube size of at least 7.50 mm were eligible for inclusion in the study. Subjects were treated with UVA for 20 min daily for 5 days and followed for 30 days.ResultsFive subjects were enrolled (mean age 56.60 years, three male). At baseline, all subjects scored 9/10 on the World Health Organization (WHO) clinical severity scale (10 = death), with predicted mortality ranging from 21% to 95%. Average endotracheal viral load significantly reduced from baseline to day 5 (− 2.41 log; range − 1.16 to − 4.54; Friedman p = 0.002) and day 6 (− 3.20; range − 1.20 to − 6.77; Friedman p < 0.001). There were no treatment-emergent adverse events, with no changes in oxygenation or hemodynamics during the 20-min treatments. One subject died 17 days after enrollment due to intracranial hemorrhagic complications of anticoagulation while receiving extracorporeal membrane oxygenation. The remaining subjects clinically improved and scored 2, 4, 5, and 7 on the WHO scale at day 30. In these subjects, clinical improvement correlated with reduction of viral load (Spearman’s rho = 1, p < 0.001).ConclusionsIn this first-in-human study, endotracheal narrow-band UVA therapy, under specific and monitored settings, appears to be safe and associated with a reduction in respiratory SARS-CoV-2 viral burden over the treatment period. UVA therapy may provide a novel approach in the fight against COVID-19.Clinical Trial NumberNCT04572399.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12325-021-01830-7.
Read full abstract