Studies suggest that the width of the acoustic shadow on ultrasound (US) more accurately reflects true stone size than the stone width in US images. We evaluated the need for training in the adoption of the acoustic shadow sizing technique by clinical providers. Providers without shadow sizing experience were recruited and assigned in a stratified, alternating manner to receive a training tutorial ("trained") or no intervention ("control"). Each conducted a baseline assessment of 24 clinical US images; where present, shadow width was measured using custom calipers. The trained group subsequently completed a standardized training module on shadow sizing. All subjects repeated measurements after ∼1 week. Group demographics were compared using Fisher's exact test. Measurements were compared to clinically reported stone sizes on corresponding CT and US using mixed-effects models. One millimeter concordance between shadow and CT size was compared using a generalized linear mixed-effects model. Twenty-six subjects were included. There was no significant difference between groups in demographics, clinical role, or US experience. Mean reported CT and US stone sizes were 6.8 ± 4.0 mm and 10.3 ± 4.1 mm, respectively. At baseline, there was no difference in shadow size measurements between groups (p = 0.18), and shadow size was no more accurate than US stone size (p = 0.28 trained; p = 0.81 control), compared to CT. After training, overestimation bias of shadow size in the trained group decreased to 1.6 ± 0.5 mm (p < 0.01), relative to CT. This was not significantly associated with clinical rank, US experience, or stone-measuring experience. One millimeter concordance with CT size significantly increased from 23% to 35% of stones after training (p = 0.01). No significant improvement occurred in the control group. Acoustic shadow sizing was readily adopted by inexperienced providers, but was not more accurate than reported US stone sizes without training. Education on shadow sizing may be warranted before clinical adoption.