The special calcite bodies (CBs) exposed within the ultrahigh temperature (UHT) granulite facies terrain in the Balangoda area of Sri Lanka preserve shreds of evidence for the generation of crust-derived carbonatite in the crust. The CBs are exclusively made up of massive calcites and appear as concordant bands extending tens of meters or as meso-scale isolated pockets hosting the massive dolomitic marble band. Various sizes of mafic and calc-silicate enclaves occur as rotated or tilted structures within the CBs. The contact between the CBs and the host marble is texturally and mineralogically gradational, while the contact between the enclaves and the CBs is sharp. The large-ion lithophile elements and rare earth element contents of the CBs show enrichment compared to the host marble, while depletion compared to typical carbonatites. Furthermore, the Sr content and C-O isotope values in CBs differ from those found in known carbonatites, hydrothermal carbonates, or metasomatic carbonates. We suggested that the crustal anatexis of marble should be hypothesized as the possible mechanism for the origin of the CBs. Microtexural evidence of the calcite grains shows indications of the melting of the host marble. The release of CO2-rich fluids from the collision and thrusting of HC over VC, or related metamorphic events, likely lowered the solidus of carbonates, triggering crustal anatexis of marble during UHT granulite facies metamorphism. The generated low viscous carbonate melt may have moved rapidly, resulting in a low degree of mixing of silicates and fragmentation and dislocation of enclaves. The results of the present study reflect the existence of anatexis of carbonates under extreme crustal conditions and provide a better understanding of the sources, migration paths and reservoirs of the carbon recycling processes.
Read full abstract