Electric vehicle (EV) fast charging systems are rapidly evolving to meet the demands of a growing electric mobility landscape. This paper provides a comprehensive overview of various fast charging techniques, advanced infrastructure, control strategies, and emerging challenges and future trends in EV fast charging. It discusses various fast charging techniques, including inductive charging, ultra-fast charging (UFC), DC fast charging (DCFC), Tesla Superchargers, bidirectional charging integration, and battery swapping, analysing their advantages and limitations. Advanced infrastructure for DC fast charging is explored, covering charging standards, connector types, communication protocols, power levels, and charging modes control strategies. Electric vehicle battery chargers are categorized into on-board and off-board systems, with detailed functionalities provided. The status of DC fast charging station DC-DC converters classification is presented, emphasizing their role in optimizing charging efficiency. Control strategies for EV systems are analysed, focusing on effective charging management while ensuring safety and performance. Challenges and future trends in EV fast charging are thoroughly explored, highlighting infrastructure limitations, standardization efforts, battery technology advancements, and energy optimization through smart grid solutions and bidirectional chargers. The paper advocates for global collaboration to establish universal standards and interoperability among charging systems to facilitate widespread EV adoption. Future research areas include faster charging, infrastructure improvements, standardization, and energy optimization. Encouragement is given for advancements in battery technology, wireless charging, battery swapping, and user experience enhancement to further advance the EV fast charging ecosystem. In summary, this paper offers valuable insights into the current state, challenges, and future directions of EV fast charging, providing a comprehensive examination of technological advancements and emerging trends in the field.
Read full abstract