The influence of ultra-thin SiOx plasma deposited films on the corrosion resistance of adhesive films on a laser surface melted 7075 aluminium alloy was investigated by means of complementary techniques in comparison to the just laser surface melted state. Laser surface melting (LSM) was performed using a continuous wave mode at a wavelength of 1064 nm. Ultra-thin plasma polymer films were deposited from a mixture of hexamethyldisilane (HMDSO), oxygen, and argon by means of an audio-frequency glow discharge. The surface morphology and surface chemistry compositions were investigated by employing field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), diffuse reflection infrared Fourier transform spectroscopy, and X-ray photoelectron spectroscopy. The corrosion resistance of plasma polymer coated LSM Al-7075 alloy was studied using linear sweep voltammetry and electrochemical impedance spectroscopy in a chloride-containing electrolyte. The electrochemical studies showed an improved corrosion resistance for plasma film-coated alloys compared to the just laser surface melted state. To study the corresponding surface adhesive properties, the samples were coated with an epoxy amine adhesive. 90°-peel test under humid conditions confirmed the improvement of interfacial wet-adhesion corrosion tests showed a strong improvement of the delamination resistance of adhesives caused by the ultra-thin interfacial SiOx-films.