Nanofiltration (NF) technology is increasingly used in the water treatment and separation fields. However, most research has focused on refining the selective layer while overlooking the potential role of the supporting layer. With expertise in ultrathin polymer films, particularly in the production of polyethylene (PE) membranes, we explore the possibility of improving NF membrane performance by precisely controlling the structure and surface properties of the ultrathin supporting layer in this work. Here, we introduced an innovative NF membrane that used a submicrometer ultrathin PE membrane produced through a biaxial stretching process, which is significantly thinner than commercial PE membranes available on the market. The core innovations are as follows: first, we focused on precise control of the supporting layer rather than just the selective layer, achieving significant enhancements in overall NF membrane performance; second, the ultrathin PE supporting layer served as a tunable interface for interfacial polymerization, offering possibilities for structural control of the selective layer and advancing membrane performance innovations. The resulting NF membrane boasts an overall thickness of ∼630 nm, which represents the thinnest NF membrane documented to date. This ultrathin NF membrane showed an ultrahigh Cl-/SO42- selectivity of 338.03, placing it at the forefront of existing literature. This study sheds light on the important role of the supporting layer in the preparation of selective layers. We believe that this approach has the potential to contribute to the development of ultrathin, high-performance NF membranes.
Read full abstract