Animal welfare strongly influences the health and performance of cattle and is an important factor for consumer acceptance. One parameter for the quantification of health status is the lying duration, which can be deployed for the early detection of possible production-related illnesses. Usually, 3D-accelerometers are the tool to detect lying duration in cattle, but the handling of bulls sometimes has special requirements because frequent manipulation in daily farming routines is often not possible. An ultrahigh-frequency (UHF) radio-frequency identification (RFID) system was installed in a beef cattle barn in Germany to measure the activity and lying time of bulls. Such UHF RFID systems are typically used for estrus detection in dairy cows via activity level, but can also be considered, for instance, as an early detection for lameness or other diseases. The aim of the study was to determine whether the estimations of activity level and lying duration can also be traced in husbandry systems for fattening bulls. Two groups of bulls (Uckermärker cattle, n = 10 and n = 13) of the same age were equipped with passive UHF RFID ear transponders. Three cameras were installed to proof the system and to observe the behaviour of the animals (standing, lying, and moving). Furthermore, accelerometers were attached to the hind legs of the bulls to validate their activity and lying durations measured by the RFID system in the recorded area. Over a period of 20 days, position (UHF RFID) and accelerometer data were recorded. Videos were recorded over a period of five days. The UHF RFID system showed an overall specificity of 95.9%, a sensitivity of 97.05%, and an accuracy of 98.45%. However, the comparison of the RFID and accelerometer data revealed residuals (ԑ) of median lying time (in minutes per day) for each group of ԑGroup1 = 51.78 min/d (p < 0.001), ԑGroup2 = −120.63 min/d (p < 0.001), and ԑGroup1+2 = −34.43 min/d (p < 0.001). In conclusion, UHF RFID systems can provide reliable activity and lying durations in 60 min intervals, but accelerometer data are more accurate.