The importance of investigating ultra-high energy cosmic ray particles interactions was investigated in this work. Different hadronic interaction models such as (SIBYLL, EPOS, and QGSJET) were used air showers simulation AIRES program (version 19.04.00). Also, the shower size of Extensive Air Showers (EAS) was calculated by estimating the longitudinal development. Moreover, the longitudinal development simulation of the two primary particles (iron nuclei and proton) was performed, taking into account their primary energies effect as well the zenith angle for charged particles that produced in the EAS, with energies (1017 and 1019) eV. At such extremely high energies (1017 and 1019) eV, new parameters as a function of the primary energy were obtained by fitting the longitudinal development curves of EAS using the Lorentz function. Comparison of the results showed a good agreement between the values obtained from the parameterized longitudinal development using Lorentz function with experimental results by Pierre Auger EAS observatory as well the simulated results by Sciutto for the primaries iron nuclei as well proton, with the electrons and the charged muons secondary particles of high energies.