Aiming at the problem of mobile data traffic surge in 5G networks, this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network (UDN) and focuses on solving the resulting challenge of increased energy consumption. A base station control algorithm based on Multi-Agent Proximity Policy Optimization (MAPPO) is designed. In the constructed 5G UDN model, each base station is considered as an agent, and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance. To reduce the extra power consumption due to frequent sleep mode switching of base stations, a sleep mode switching decision algorithm is proposed. The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent's action strategy. Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.
Read full abstract