BackgroundDiabetic foot ulcers (DFUs) have become a global health concern, which can lead to diabetic foot infection (DFI), lower leg amputation, and even mortality. Though the standard of care (SOC) practices have been recognized as the “gold standard” for DFU care, SOC alone may not be adequate to heal all DFUs and prevent their recurrence. The use of dermal matrix has emerged as an adjuvant treatment to enhance DFU healing. The current study aimed to evaluate the effectiveness and safety of dermal matrix application as an adjuvant treatment to the SOC.MethodsThe databases of PubMed, Embase and CENTRAL were independently searched by two authors, with the following key terms: “diabetic foot ulcer”, “acellular dermal matrix”, “wound healing”, and so on. Randomized controlled trials (RCTs) evaluated the efficacy and safety of dermal matrix in the treatment of DFUs were eligible for inclusion. The primary outcomes analyzed included time to complete healing and complete healing rate at the final follow-up, while secondary outcomes included wound area, ulcer recurrence rate, amputation risk and complication risk. Meta-analyses were performed using random-effect or fixed-effect models, based on the heterogeneity test.ResultsThis study included a total of 15 RCTs with a total of 1524 subjects. Of these, 689 patients were treated with SOC alone, while 835 patients received SOC plus dermal matrix. Compared to the SOC group, significantly shorter time (MD = 2.84, 95%CI: 1.37 ~ 4.32, p < 0.001***) was required to achieve complete healing in dermal matrix group. Significantly higher complete healing rate (OR = 0.40, 95%CI: 0.33 ~ 0.49, p < 0.001***) and lower overall (RR = 1.83, 95%CI: 1.15 ~ 2.93, p = 0.011*) and major (RR = 2.64, 95%CI: 1.30 ~ 5.36, p = 0.007**) amputation risks were achieved in dermal matrix group compared to SOC group. No significant difference was found in the wound area, ulcer recurrence rate, and complication risk between the two groups.ConclusionsThe application of dermal matrix as an adjuvant therapy in conjunction with SOC effectively improved the healing process of DFUs and reduced the amputation risk when compared to SOC alone. Furthermore, dermal matrix application was well tolerated by the subjects with no added complication risk.