Natural polysaccharides have been recognized as major bioactive components in skincare and wound care products. In this study, the skincare benefits and self-healing properties of Lignosus rhinocerotis polysaccharides (LRP) and its degraded products (DLRP-1, DLRP-2 and DLRP-3) by ultrasound assisted H2O2/Vc treatment (U-H/V) at different ultrasonic intensity (28.14, 70.35, and 112.56 W/cm2) were investigated. U-H/V altered the internal crystalline structure and microstructure of LRP, and enhanced the thermal stability. Due to the breakage of molecular chains after U-H/V, the moisture absorption of LRP was enhanced but the moisturizing property showed a different degree of reduction. U-H/V significantly improved the antioxidant, anti-tyrosinase and anti-inflammatory activities of LRP. Furthermore, the results of enzyme kinetic studies showed a mixed competitive-noncompetitive inhibition of tyrosinase activity by DLRP-3 and the inhibition constant of DLRP-3 on tyrosinase was 2.97 mg/mL. The apparent viscosity of LRP dispersions showed a first increasing followed by decreasing trend as ultrasonic intensity rose. U-H/V enhanced the viscoelastic properties of LRP gels without destroying their self-healing properties. This findings reveal that U-H/V is beneficial for improving the skincare efficacy of LRP, providing a theoretical foundation for the applicability of LRP in wound dressings.