The accuracy of the control model is essential for the effectiveness of model-based control methods. However, factors such as model simplification, parameter variations, and environmental noise can introduce inaccuracies in vehicle state descriptions, thereby compromising the precision of path tracking. This study introduces data-driven enhancements for an MPC-based path tracking controller in autonomous vehicles (DD-PTC). The approach consists of two parts: firstly, Kolmogorov–Arnold Networks (KANs) are utilized to estimate tire lateral forces and correct tire cornering stiffness, thereby establishing a dynamic predictive model. Secondly, Gaussian Process Regression (GPR) is deployed to accurately capture the unmodeled dynamics of the vehicle to form a comprehensive control model. This enhanced model allows for precise path tracking through steering control. The superiority of DD-PTC is confirmed through extensive testing on the Simulink-CarSim simulation platform, where it consistently surpasses normal MPC and Linear Quadratic Regulator (LQR) strategies, especially in minimizing lateral distance errors under challenging driving conditions.
Read full abstract