Breast cancer is the leading cause of women's deaths and associated comorbidities. The advanced and targeted strategies against breast cancer have gained considerable attention due to their potential enhanced therapeutic efficacy over conventional therapies. In this context, phototherapies like photodynamic therapy (PDT) and photothermal therapy (PTT) have shown promise as an effective and alternative strategy due to reduced side effects, noninvasiveness, and spatiotemporal specificity. With the advent of nanotechnology, several types of nanomaterials that have shown excellent prospects in increasing the efficacy of photo therapies have been exploited in cancer treatment. In recent years, 2D nanomaterials have stood out promising because of their unique ultrathin planar structure, chemical, physical, tunable characteristics, and corresponding remarkable physiochemical/biological properties. In this review, the potential and the current status of several types of 2D nanomaterials such as graphene-based nanomaterials, Mxenes, Black phosphorous, and Transition Metal Dichalcogenides for photo/thermo and combination-based imaging and therapy of breast cancer have been discussed. The current challenges and prospects in terms of translational potential in future clinical oncology are highlighted.
Read full abstract