Addressing the complexities of manual wheelchair (MWC) vibrations is crucial for the well-being of users and their integration into society. This study investigate the experimental choices influencing the assessment of vibration exposure, aiming to contribute for enhanced MWC developments and standardized design principles. By conducting a comprehensive full factorial experiment, the impact of various factors, including four MWC loads, two speeds, five floor types, and two MWC models was examined. Notably, findings highlight the predominant influence of floor type on vibration exposure, followed by speed and, to a lesser extent, MWC properties. Furthermore, the study suggests that enlisting an able-bodied participant is more representative than using a dummy when loading the MWC, providing valuable insights into the genuine MWC/user dyad response to vibrations. This research sets the stage for a more informed and standardized approach to address the vibration exposure faced by MWC users.
Read full abstract