A characteristic feature of high-entropy alloys is high strength at maintaining plasticity, wear and corrosion resistance, and fracture toughness at cryogenic temperatures. Currently, CoCrFeNiMn is the best-investigated high-entropy compound. However, its application is limited in the high-temperature region due to the low values of the deforming stress level at the plasticity breaking point at T>296 K. One of the common ways to improve the material durability is the addition of substitution atoms of larger atomic radius, and Al, Ti, and Mo are some of these atoms. The paper presents the analysis of the mechanical behavior of single crystals of CoCrFeNiMn and CoCrFeNiMо FCC high-entropy alloys (at. %) oriented along the [001] direction: the author studied the temperature dependence of critical shear stresses τcr(T) within the temperature range of T=77–973K, the type of dislocation structure, strain hardening coefficient θII, plasticity and fracture at Т=296 K under tension. The study shows that the alloying with Mo atoms 4 at. % of the CoCrFeNi system (at. %) causes the solid solution hardening, and critical shear stresses τcr increase within the entire studied temperature range. The onset of plastic deformation is associated with slip at all temperature tests. At T=296 K, the author identified a planar dislocation structure with flat dislocation pile-ups and dislocation networks in CoCrFeNiMo while in equiatomic CoCrFeNiMn, at such test temperature, a uniform distribution of dislocations was observed in several systems without flat pile-ups. Work hardening coefficient, plasticity, and the level of stresses before fracture turn out to be similar in [001]-crystals of CoCrFeNiMo and CoCrFeNiMn high-entropy alloys, which are determined by the development of slip deformation simultaneously in several systems. Crystals are destroyed viscously at 296 K at the same level of stress.
Read full abstract