Understanding the environmental fate of biodegradable plastics in aquatic systems is crucial, given the alarming amount of plastic waste and microplastic particles transported through aquatic pathways. In particular, there is a need to analyze the biodegradation of commercialized biodegradable plastics upon release from wastewater treatment plants into natural aquatic systems. This study investigates the biodegradation behaviors of poly(butylene adipate terephthalate) (PBAT) and poly(vinyl alcohol) (PVA) in wastewater, freshwater, and seawater. Biodegradation of PBAT and PVA assessed through biochemical oxygen demand (BOD) experiments and microcosm tests revealed that the type of aquatic system governs the biodegradation behaviors of each plastic, with the highest biodegradation rate achieved in wastewater for both PBAT and PVA (25.6 and 32.2 % in 30 d, respectively). Plastic release pathway from wastewater into other aquatic systems simulated by sequential incubation in different microcosms suggested that PBAT exposed to wastewater and freshwater before reaching seawater was more prone to degradation than when directly exposed to seawater. On the other hand, PVA displayed comparable biodegradation rate regardless of whether it was directly exposed to seawater or had passed through other environments beforehand. Metagenome amplicon sequencing of 16S rRNA genes revealed distinct community shifts dependent on the type of plastics in changing environments along the simulated aquatic pathway. Several bacterial species putatively implicated in the biodegradation of PBAT and PVA are discussed. Our findings underscore the significant influence of pollution routes on the biodegradation of PBAT and PVA, highlighting the potential for wastewater treatment to facilitate rapid degradation compared to direct exposure to pristine aquatic environments.