There have been reports of unauthorized use of unmanned aerial vehicles (UAVs) in highly controlled areas (airports, military facilities, against critical industrial infrastructure) in the media since the mid-2000s. Nowadays, small UAVs are widely used for unauthorized surveillance of important objects, conducting terrorist attacks and sabotage, transporting prohibited goods (weapons, drugs), as well as for military purposes. For this reason, the problem of countering UAVs, and especially small UAVs, has be-come extremely relevant. Analysis of publications in this area has revealed a small number of serious studies in this topic. Conclusions, made on the effectiveness of existing air defense systems for combating all types of UAVs in several papers seem to be too optimistic. However, the problem of countering UAVs, and especially small UAVs, is highly complicated, multifaceted and has not been solved yet. The goal of this paper is to analyze UAV as an object of detection and defeating while using various ways and means of countering UAVs. This work focuses on the analysis of UAV as an object of radar, radio-reconnaissance and radio-technical, optical-electronic and acoustic intelligence, as well as an object of fire and electronic defeating. Results of systematization and analysis of UAVs as an object of fire and electronic defeating, capabilities of on time detecting and target indicating by radar, radio-reconnaissance and radio-technical, optical-electronic and acoustic means of intelligence are presented in the paper. Carried out systematization is based on information from more than 40 open sources. Analysis of the sources reveals the list of main features of the UAV as an object of defeating, and makes it possible to carry out a detailed analysis of modern detection systems, as well as their effectiveness and disadvantages. Elements of novelty of the paper are general features of UAVs detection process, as well as systemic disadvantages of the detection systems technical solutions, which lead to reduce in efficiency, while being used against UAVs. The material of the paper can be used to generate initial data for modeling and studying the combat effectiveness of the air defense systems when countering UAVs. This article can be useful for constructors, who design the countering UAV systems.
Read full abstract