Superoxide dismutases (SODs) are antioxidant enzymes that protect cells from oxidation. Three SODs have been identified in mammals, but there is limited information in teleosts. This study investigates SODs in the European eel and their expression patterns during testis maturation. Phylogenetic and synteny analyses revealed SODs paralogs and their evolution in vertebrates. The eel possesses one SOD1 and two SOD2/3 (a and b), indicating SOD2 and SOD3 duplication in elopomorphs. SODs expression were then evaluated in various male and female tissues. SOD1 is more expressed in females, while SOD2a and SOD2b dominate brain-pituitary-gonad tissues in both sexes. SOD3a showed predominant expression in the ovary and the male livers, whereas SOD3b was found in the pituitary and brain of both sexes. The effects of different maturation protocols (standard hormonal treatment vs. same protocol preceded with cold seawater pre-treatment) on SODs expression during testis maturation were evaluated. Salinity increase at the onset of standard treatment at 20 °C, simulating early migration, upregulated SOD1, SOD2a, and SOD2b, coinciding with spermatogonia type A differentiated cells dominance. Thereafter, SOD2a and SOD3a decreased, while SOD2b increased during hormonal treatment-induced spermatogenesis. Pre-treatment with seawater at 10 °C, mimicking the conditions at the beginning of the seawater migration, downregulated SOD1 but increased SOD3a expression. Finally, the standard hormonal treatment, replicating spawning at higher temperatures, downregulated SOD1 in eels without any pre-treatment while SOD2a expression increased in pre-treated eels. This study revealed tissue-specific, sex-dependent, and maturation-related SOD expression patterns, predicting SODs dynamic expression profiles during their reproductive migration.
Read full abstract