Spin separation technology is a key technology for realizing the detection function at the end of the rotational trajectory. It is also a necessary condition for the fuse control system to adjust its control strategy according to actual combat needs. To explore a new type of proximity fuse detection method, this article first designs a detection separation mechanism for the end of the trajectory. An interior ballistic model of the separation mechanism was then established through closed bomb tests and equivalent interior ballistic equations, and the aerodynamic parameters of the front-stage separation body at the moment of separation were obtained based on computational fluid dynamics numerical simulation. Finally, a separation dynamics model of the separation mechanism was established to analyze the motion state after the separation action of the front-stage separation body. The results demonstrate the feasibility of the proposed separation mechanism. The discrepancy between the simulation and experiment of the velocity increment for the front-stage separation body is about 1.07%. The attack angle for the front-stage separation body is below 2°, and the period with a displacement between two stage bodies greater than 3 m is around 0.365 s. This research can provide new ideas and theoretical references for the design of a similar fuse detection separation mechanism.
Read full abstract