This paper evaluates the potential of using artificial intelligence (AI) and machine learning (ML) approaches for classification of Landsat satellite imagery for environmental coastal mapping. The aim is to identify changes in patterns of land cover types in a coastal area around Cheetham Wetlands, Port Phillip Bay, Australia. The scripting approach of the Geographic Resources Analysis Support System (GRASS) geographic information system (GIS) uses AI-based methods of image analysis to accurately discriminate land cover types. Four ML algorithms are applied, tested and compared for supervised classification. Technical approaches are based on using the ‘r.learn.train’ module, which employs the scikit-learn library of Python. The methodology includes the following algorithms: (1) random forest (RF), (2) support vector machine (SVM), (3) an ANN-based approach using a multi-layer perceptron (MLP) classifier, and (4) a decision tree classifier (DTC). The tested methods using AI demonstrated robust results for image classification, with the highest overall accuracy exceeding 98% and reached by the SVM and RF models. The presented scripting approach for GRASS GIS accurately detected changes in land cover types in southern Victoria over the period of 2013–2024. From our findings, the use of AI and ML algorithms offers effective solutions for coastal monitoring by analysis of change detection using multi-temporal RS data. The demonstrated methods have potential applications in coastal and wetland monitoring, environmental analysis and urban planning based on Earth observation data.