The effect of counterions was investigated to probe the principal ionic effects on the solubility in water and melting behavior of cationic gemini surfactants. We focused on two types of counterions: (1) small inorganic counterions that are typically taken from the Hofmeister series were studied to focus on the effect of ion type and (2) n-alkylcarboxylate counterions were studied to focus on the effect of the hydrophobicity of counterions. The Krafft temperature (Tk) and melting temperature (Tm) were obtained by conductivity measurements, calorimetric measurements, and optical microscopy observation. The results clearly indicate that Tk, which represents the solubility of surfactants, is not determined by a single parameter of ions such as the hydration free energy, as is too often assumed, but rather by the combined effects between the hydrophobicity of anions associated with other effects such as the polarizability, dehydrated ion size, and ionic morphology. In parallel, our observation demonstrated that all of the surfactants showed a transition from a crystalline phase to a thermotropic liquid-crystalline phase at around ca. 70 °C, which transformed to an isotropic liquid phase at around ca. 150 °C, and that the transition temperatures depended strongly on the counterion type. The counterion effects on the solubilization and melting behaviors were then compared with micellization properties that have been reported previously. These results provide new insight into understanding the effect of ions on the delicate balance of forces controlling the solution properties and aggregate morphology of charged amphiphilic molecules. Specifically, the solubilization properties of these cationic surfactants with various counterions were determined mainly by the subtle interplay between the hydration of counterions and the dissociation energies (stability of crystallinity) of the ion pair.