SummaryUnder long‐term exposure to solar radiation and temperature difference, metal roof systems produce a noticeable thermal behavior. The thermal behavior experiment of two typical metal roof systems in engineering was studied. The temperature stress and displacement of the two typical metal roof systems under different influencing factors are compared and analyzed. The results show that the thermal behavior of the stainless steel roof system is significant. The peak stress accounts for about 69.9% of the stainless steel yield strength, and the peak displacement accounts for 3/3500 of the slab span. The loading rate and temperature difference greatly influence the thermal behavior of the two typical roof systems. The maximum influence of temperature difference and loading rate on the thermal behavior is 77.8% and 67.3%, respectively. The holding temperature time has a minor influence on the thermal behavior of the two typical roof systems, and the maximum influence range is less than 7%. The research conclusions provide a valuable reference for the thermal design of metal roof systems.
Read full abstract