Purpose Improvement and optimization design of a two-stage vibration isolation system proposed in this paper are conducted to ensure the device of electronic work effective.Design/methodology/approach The proposed two-stage vibration isolation system of airborne equipment is optimized and parameterized based on multi-objective genetic algorithm.Findings The results show that compared with initial two-stage vibration isolation system, the angular vibration of the two-stage vibration isolation system becomes 3.55 × 10-4 rad, which decreases by 89%. The linear isolation effect is improved by at least 67.7%.Originality/value The optimized two-stage vibration isolation system effectively improves the vibration reduction effect, the resonance peak is obviously improved and the reliability of the mounting bracket and the shock absorber is highly improved, which provides an analysis method for two-stage airborne equipment isolation design under complex dynamic environment.
Read full abstract