Ethyl acetate, acetone, 2-propanol, 1-propanol, and ethanol were screened among the class 3 category solvents as an alternative to hexane based on operational and occupational safety and bio-renewability potential. All five solvents exhibited higher extractability (22.3 to 23.2%) than hexane (21.5%) with soybean flour. Additionally, there was no significant difference in the fatty acid and triacylglycerol (TAG) composition of the oils extracted using alternate solvents and hexane, indicating the oil quality was not affected. More importantly, ethyl acetate (2.1%) resulted in a marginally higher yield of TAG, while 2-propanol showed a nearly equal yield to hexane. Further, membrane desolventizing was attempted to mitigate the limitations of higher thermal energy requirements. One of the polydimethylsiloxane membranes exhibited good selectivity (TAG rejection 85.8%) and acceptable flux (59.3 L·m-2·h-1) with an ethyl acetate miscella system. Under plant-simulated recirculation conditions, a two-stage membrane process reduced the oil content in permeate to 2.5%. The study revealed that ethyl acetate could potentially replace hexane, considering its higher TAG extractability and suitability for the membrane-augmented solvent recycling process in the extraction plants.
Read full abstract