This research investigated the comparative structural response of a straight and curved continuous bridge deck subjected to realistic working loads. The study involved examining the variance in analysis results obtained while utilizing the grillage and finite element methods for an idealized bridge deck. The combined impact of continuity at the intermediate support and the curvature on the overall structure was examined. The idealized case study is a 45m two-span continuous bridge deck with a 22.5m straight span and an equivalent 22.5m curved span with a centerline radius of approximately 14.32m. The bridge deck was designed for design dead load and 45 units of HB load, these loads were computed based on recommendations given in BS 5400-2:2006 and BD 37/01-1:2001[1,2]. For the Grillage Analysis Sap2000 version 22 software was utilized while CSI Bridge version 21 was used to simulate the Finite Element model. The findings from the study revealed that the results obtained from the grillage analysis method were more conservative with respect to midspan sagging moments and support shear force. However, the finite element analysis result was more conservative for support hogging moments, deflection and torsional moments. It was concluded that finite element analysis result values differed from the grillage analysis, but the values were close enough with the disparity not calling for serious concerns.
Read full abstract