The noninvasive two-photon excitation autofluorescence imaging of cellular and subcellular structure and dynamics in live tissue could provide critical in vivo information for biomedical studies. However, the two-photon microscopy of short-wavelength endogenous fluorophores, such as tryptophan and hemoglobin, is extremely limited due to the lack of suitable imaging techniques. In this study, we developed a short-wavelength excitation time- and spectrum-resolved two-photon microscopy system. A 520-nm femtosecond fiber laser was used as the excitation source, and a time-correlated single-photon counting module connected with a spectrograph was used to provide time- and spectrum-resolved detection capability. The system was specially designed for measuring ultraviolet and violet-blue fluorescence signals and thus was very suitable for imaging short-wavelength endogenous fluorophores. Using the system, we systematically compared the fluorescence spectra and fluorescence lifetimes of short-wavelength endogenous fluorophores, including the fluorescent molecules tyrosine, tryptophan, serotonin (5-HT), niacin (vitamin B3), pyridoxine (vitamin B6), and NADH and the protein group (keratin, elastin, and hemoglobin). Then, high-resolution three-dimensional (3D) label-free imaging of different biological tissues, including rat esophageal tissue, rat oral cheek tissue, and mouse ear skin, was performed in vivo or ex vivo. Finally, we conducted time-lapse imaging of leukocyte migration in the lipopolysaccharide injection immunization model and a mechanical trauma immunization model. The results indicate that the system can specifically characterize short-wavelength endogenous fluorophores and provide noninvasive label-free 3D visualization of fine structures and dynamics in biological systems. The microscopy system developed here can empower more flexible imaging of endogenous fluorophores and provide a novel method for the 3D monitoring of biological events in their native environment.
Read full abstract