The utilization of solar energy by light conversion processes in both natural and artificial photosynthesis systems has become a pivotal means of sustaining a consistent power supply for our daily lives and production. In general, these reactions rely on the visible spectra region where the sun produces abundant energy according to the black body's emission. Further expanding the adoption of the near-infrared (NIR) spectral region through upconversion has become an intelligent strategy to improve the entire utilization rate of solar energy. In this work, the two-photon upconversion (TPUC) properties were discovered in CsPbBr3 nanoplates (NPs) emitted at 450 nm, and a sub-gap energy level was observed to serve as the center to facilitate the upconversion process. The excitation threshold for TPUC is drastically lower than that for the two-photon absorption, another nonlinear upconversion path that requires strengthened excitation power. Moreover, a significant negative correlation between the excitation threshold for TPUC in the CsPbBr3 NPs and the exciton binding energy was unveiled, which could be attributed to the enhanced quantum confinement effects. Our work paved the way for a feasible way to expand the utilization of the NIR spectral region in light conversion applications.
Read full abstract